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Introduction. Yesterday—on Linus Pauling’s 100th birthday, as it happens—
I was presented with a manuscript which by its title1 purports to be about
physics, but which is written in language so formally ideosyncratic as to be
virtually unreadable (or at any rate unskimable) by this physicist, and which in
the normal course of events I would cast dismissively (and unread) aside. The
author declares an intention to “describe a procedure for solving Maxwell’s
equations” and (in a sequel) to “describe, quite explicitly, the relation between
the various source-free electromagnetic fields and the various quantum states
of the photon.” But the paper provides almost nothing by way of detailed
motivational commentary, and no reference which might help the reader to
guess the tradition within which the author imagines himself to be working,
what unsolved problem he imagines himself to be solving, what tool or tools to
be sharpening or displacing.

But I have high regard for the author of this strange work, whom I know to
be a mathematician with a celebratedly crystaline quality of mind, and (if not
actually a physicist then) a reflective “physics watcher” of the highest order.
So in the knowledge that Tom has labored hard to produce a work that he
himself considers to be important . . . I sit down to see if I can figure out what
he is talking about, and why. What follows, therefore, is a record of my effort
to translate into the orthodox language of physics an obscure statement which
(on no explicit evidence) I suspect radiates from Tom’s recent interest in what
John Wheeler2 called “Rainich’s already unified field theory.”

Electromagnetic field as a complex vector field. Electrodynamics came to us—
from Maxwell via Heaviside and Lorentz—as the theory of a pair of (real-valued)
vector fieldsEEE(xxx, t) andBBB(xxx, t) driven by a pair of prescribed source fields ρ(xxx, t)
and JJJ(xxx, t). The equations of motion (Maxwell-Lorentz) can be written3

1 “Fourier Transforms and Maxwell’s Equations: Part I”
2 Geometrodynamics (), pages 237 et seq .
3 See classical electrodynamics (/), page 161.



2 Electrodynamics according to Wieting?

∇∇∇···EEE = ρ

∇∇∇×BBB − 1
c

∂
∂tEEE = 1

cJJJ

∇∇∇···BBB = 0
∇∇∇×EEE + 1

c
∂
∂tBBB = 000

To render explicit the Lorentz covariance of the theory, and to facilitate certain
computations, it proves useful to feed EEE and BBB into the design of a 2nd-rank
“field tensor” Fµν and to feed ρ and JJJ into the design of a “current vector” Jµ:

‖Fµν‖ ≡




0 −E1 −E2 −E3

E1 0 −B1 B2

E2 B3 0 −B1

E3 −B2 B1 0


 and ‖Jν‖ =




cρ
J1

J2

J3




But Tom elects to work non-relativistically. No 4-dimensional tensors appear in
his work (all vectors are 3-vectors), and he assigns distinct roles to t and xxx. He
chooses a different (but almost equally well-trodden) path toward unification
and generalization.

First, he posits (with Rainich’s “duality rotations” evidently in mind) the
existence of magnetic sources: the Maxwell-Lorentz equations become

∇∇∇···EEE = ρe

+∇∇∇×BBB − 1
c

∂
∂tEEE = 1

cJJJe

∇∇∇···BBB = ρm

−∇∇∇×EEE − 1
c

∂
∂tBBB = 1

cJJJm




(1)

Secondly, he elects to look upon EEE and BBB as the real/imaginary parts of a
complex 3-vector field

VVV ≡ EEE + iBBB

and in that same spirit to write

ρ ≡ ρe + i ρm

JJJ ≡ JJJe + iJJJm

Equations (1) can then be rendered

∇∇∇···VVV = ρ

−i∇∇∇×VVV − 1
c

∂
∂tVVV = 1

cJJJ

}
(2)

If we take the divergence of the latter, draw upon the former and recall that
(identically) div curlVVV = 0 we obtain the continuity equation

∂
∂tρ +∇∇∇···JJJ = 0 (3)
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as a forced implication of the field equations. The “dangling i ” in the second
of the field equations (2) serves to couple the real (electrical) and imaginary
(magnetic) components of the VVV -field. The absence of such an i in (3) supplies
“electro-charge conservation” and “magneto-charge conservation” of separate
and distinct implications of (3). Proceeding in the spirit of the preceding
remark, we notice that

{
+ i

(
∇∇∇×

)
− 1

c
∂
∂t

}{
− i

(
∇∇∇×

)
− 1

c
∂
∂t

}
︸ ︷︷ ︸VVV = 1

c

{
+ i

(
∇∇∇×

)
− 1

c
∂
∂t

}
JJJ

=
(

1
c

∂
∂t

)2 +
(
∇∇∇×

)2

and recall that identically
(
∇∇∇×

)2 = grad div − “vector laplacian”. In the
absence of sources the expression on the right vanishes, and so also (by the
first of the field equations) does ∇∇∇···VVV , leaving us with the second order wave
equation

VVV = 0 (4)

which is really six equations: the components of VVV have become decoupled, and
so have their real from their imaginary parts.

Fourier transformed field equations. For reasons that remain obscure, Tom
attaches special importance to the Fourier transform. Proceeding formally
(which Tom also does, but only after the apology expected of a mathematician)
we write

VVV (kkk, t) ≡ (2π)−
3
2

∫∫∫
exp

{
− ikkk···xxx

}
VVV (xxx, t) d3x

ρ(kkk, t) ≡ (2π)−
3
2

∫∫∫
exp

{
− ikkk···xxx

}
ρ(xxx, t) d3x

JJJ(kkk, t) ≡ (2π)−
3
2

∫∫∫
exp

{
− ikkk···xxx

}
JJJ(xxx, t) d3x




(5)

with obvious inverse relations.4 Notice that the t -variable is a shared variable;
i.e., that Tom does not contemplate passage from the time domain to the
frequency domain: he thinks of his fields as t -parameterized objects—“curves”
in fieldspace. Similarly his sources, which have become “t-parameterized curves
in source space.”

Introduce the inverse of (5) into the field equations (2) and obtain the
transformed field equations

ikkk ···VVV = ρ

kkk ×VVV − 1
c

∂
∂tVVV = 1

cJJJ

}
(6)

4 I refrain from Tom’s practices of writing ppp in place of my kkk, and of calling
it “momentum”—impossible already on dimensional grounds in the absence of
something like �.
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Notice that the dangling i has come to rest now in the first of the field
equations. Tom observes that the second of those equations can be written

1
c

∂
∂tVVV = KVVV − 1

cJJJ with K ≡


 0 −k3 k2

k3 0 −k1

−k2 k1 0




or a bit more simply
∂
∂tVVV = AVVV − JJJ with A ≡ cK : real antisymmetric (7)

The continuity equation (3) has become
∂
∂tρ + ikkk ···JJJ = 0 (8)

which is not an equation to be solved, but a condition which the fields ρ(xxx, t)
and JJJ(xxx, t) must satisfy if they are to be considered “admissible.”

First steps toward solution of the transformed field equations. The beauty of
the field equations (7) and the continuity equation (8)—and the point of the
Fourier transformational step that produced them—is that they involve only
a single kind of derivative: ∂

∂t survives, but ∇∇∇ has been “algebraicized.” The
equations in question yield immediately to methods standard to the elementary
theory of first-order ODE’s. The shift rule

∂
∂t − A = eA t ∂

∂te
−A t

supplies

VVV (kkk, t) = eA t
{
VVV (kkk, 0)−

∫ t

0

e−AsJJJ(kkk, s) ds
}

(9)

which demonstrably does give back VVV (kkk, 0) at t = 0, and does satisfy (7) at all
times. The obvious presumption here is that VVV (kkk, 0) and JJJ(kkk, t) are known/
prescribed.

From the antisymmetry and kkk -dependent definition of A it follows that

R(t) ≡ eA t is a rotation matrix

It achieves a rotation through the angle ϕ = c|kkk | about the unit vector k̂kk , and
possesses therefore the property that

R(t)kkk = kkk : k̂kk is the spin axis of R(t)

With this fact and the yet-unused field equation in mind, Tom dots ikkk into
(9) to obtain

ikkk···VVV (kkk, t) = ikkk···eA t
{
VVV (kkk, 0)−

∫ t

0

e−AsJJJ(kkk, s) ds
}

= ikkk···VVV (kkk, 0)−
∫ t

0

ikkk ···eA (t−s)JJJ(kkk, s) ds

= ρ(kkk, 0)−
∫ t

0

ikkk ···JJJ(kkk, s) ds

= ρ(kkk, t) by integration of the continuity equation (8)
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Tom seems to attach great importance to this result (“contention” in his odd
phrase), but I see the argument—pretty though it is—as simply an alternative
demonstration that the field equations jointly imply the continuity equation.

Here then in a nutshell is what I understand Tom’s (elegantly efficient)
procedure to be:

JJJ(kkk, t) assumed to be given
↓

VVV (kkk, t) = eA t
{
VVV (kkk, 0)−

∫ t

0

e−AsJJJ(kkk, s) ds
}

(10)
↓

ikkk ···VVV (kkk, t) = ρ (kkk, t)
↑—automatic compliance with continuity equation

Equivalent statements about JJJ(xxx, t), VVV (xxx, t) and ρ(xxx, t) = ∇∇∇···VVV (xxx, t) lie just a
Fourier transform away.

If, on the other hand, it were ρ(xxx, t) that was considered given/prescribed
then JJJ(xxx, t) would (by the continuity equation) be determined only to within
the addition of an arbitrary curl:

JJJ −→ JJJ + curlJJJ : JJJ arbitrary

Which is to say: if ρ(kkk, t) were given then JJJ(kkk, t) would be determined only to
within

JJJ −→ JJJ + ikkk×JJJ

where JJJ⊥ ≡ kkk×JJJ stands normal to kkk . The effect, by (9), can be described

VVV −→ VVV +VVV⊥

VVV⊥(kkk, t) ≡ −i
∫ t

0

eA(t−s)kkk×JJJ(kkk, s) ds

We note that the first of the field equations (6)—the Fourier transform of Gauss’
law—is insensitive to such transformations; equivalently,

∇∇∇···VVV = ρ is insensitive to VVV −→ VVV + curlVVV

It may be (but on the other hand may not be: it is Tom’s habit to expunge all
motivational commentary) such considerations that motivate Tom to insert at
this halfway point in his paper some elementary remarks pertaining to . . .

Rotational geometry in 3-dimensional k-space. We have been led to associate
time-dependent rotation matrices

R(t) = eAt : A ≡ ck


 0 −k̂3 k̂2

k̂3 0 −k̂1

−k̂2 k̂1 0



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with the points kkk = k · k̂kk of kkk -space. Dimensionally we have

[kkk] = (length)–1

so [ck] = (time)–1 = frequency: we have, in effect, spread an “angular velocity
field” ωωω (kkk) on “wave vector space,” with

ωωω (kkk) = ω(k)k̂kk

ω(k) ≡ ck

Writing
R = e K̂ωt

we observe that (by the Cayley-Hamilton theorem) K̂(K̂2 +I) = O, which leads
to the recognition that

P‖ ≡ K̂
2 + I =


 k̂1k̂1 k̂1k̂2 k̂1k̂3

k̂2k̂1 k̂2k̂2 k̂2k̂3

k̂3k̂1 k̂3k̂2 k̂3k̂3


 and P⊥ ≡ − K̂

2

comprise a complete set of orthogonal projection operators. From trP‖ = 1 we
learn that P‖ projects onto a 1-space (the ray defined by k̂kk) while by trP⊥ = 2
we know that P⊥ projects onto a 2-space (the plane normal to that ray). Write

R = eϑ K̂ =
∞∑

n=0

1
n!ϑ

n
K̂

n
{
P‖ + P⊥

}
with ϑ ≡ ωt

observe that (by appeal once again to the Cayley-Hamilton theorem)

K̂
n

P‖ =
{

P‖ : n = 0
O : n = 1, 2, 3, . . .

K̂
2ν

P⊥ = (−)ν
P⊥ : ν = 0, 1, 2, 3, . . .

K̂
2ν+1

P⊥ = (−)ν
K̂ P⊥ : ν = 0, 1, 2, 3, . . .

and obtain5

R = eϑ K̂ = P‖ +
{

cosϑ · I + sinϑ · K̂
}
P⊥ (11)

Let ZZZ(kkk) be an arbitrary vector field defined on kkk -space. The action of
R(t) upon ZZZ = ZZZ‖ + ZZZ⊥ can now be described very simply (see the following
figure): ZZZ‖ does nothing, while ZZZ⊥ twirls with angular velocity ω = ck .

5 I have used a method borrowed from Chapter 1, pages 83–88 of classical
dynamics (/) and generalized in “What does an N -dimensional rotation
look like?” which is reprinted near the end of transformational physics &
physical geometry (–). Tom uses a vectorial method special to the
3-dimensional case.
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Figure 1: The red vector marks a point in kkk-space, where (as at
every such point) dwells a time-dependent rotation matrix. The
figure illustrates the action of that rotation matrix on a typical
(black) field vector, which in time t assumes the blue position.
Farther out along that same k̂kk-ray the action is similar except that
the angular velocity is increased.

It seems to me remarkable that the Maxwell equations serve to deposit on
kkk -space such a highly structured continuum of rotation matrices, each of which
does its twirly thing quite independently of such specific “physics” (encoded
into the design of JJJ(kkk, t)) as may be written onto the the space.

Returning in this light to (10)—to what Tom calls “The Procedure”—his
proposal is that we . . .
step zero prescribe ρ(kkk, t) and use the continuity equation (8)—insensitive

to JJJ⊥, as has already been noted—to construct

JJJ‖(kkk, t) = i 1
k

∂
∂tρ(kkk, t) (12.0)

This step becomes superfluous if ρ(kkk, t) and JJJ(kkk, t) were guaranteed to satisfy
the continuity condition when shipped from the factory.
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step one Use Gauss’ law (6)—the insensitivity of which to JJJ⊥ has again
already been noted—to obtain

VVV‖(kkk, t) = −i 1
k ρ(kkk, t) (12.1)

step two Prescribe JJJ⊥(kkk, t) and VVV⊥(kkk, 0), and use the integrated form (9)
of the other field equation to obtain

VVV⊥(kkk, t) = eA t
{
VVV⊥(kkk, 0)−

∫ t

0

e−AsJJJ⊥(kkk, s) ds
}

(12.2)

Notice that we are not free to ascribe value arbitrarily to VVV‖(kkk, 0); that
data was, by (12.1), implicit in the specification of ρ(kkk, t). Note also that, while
(12.1) relates VVV‖(kkk, t) to instantaneous local source data, the integral in (12.2)
signifies that the momentary value of VVV⊥(kkk, t) summarizes historic local values
of JJJ⊥(kkk, t).

This stuff is pretty, and does seem to cast strange new light on a very
old subject. But is it good for anything? Could one use such techniques to
recast (say) electrostatics/magnetostatics? Tom admits to no interest in such
questions, however natural they may be . . .but plunges straight on into the
area that clearly does interest him, and for which he apparently considers all
else to be mere preparation:

The free field: electrodynamics in the absence of sources. Set ρ(xxx, t) = 0 and
JJJ(xxx, t) = 000, which in the Fourier transformed formalism entails that we set

ρ(kkk, t) = 0 and JJJ(kkk, t) = 000

The field equations (6) become

ikkk ···VVV = 0

kkk ×VVV − 1
c

∂
∂tVVV = 000

}
(13)

and the continuity equation reduces to a triviality. The first field equation
supplies

VVV (kkk, t) ⊥ kkk universally (each kkk, all t) (14.1)

We therefore assume VVV⊥(kkk, 0) to have been prescribed, and inquire after the
evolved free fields VVV⊥(kkk, t), concerning which (12.2) and (11) supply

VVV⊥(kkk, t) = eA t VVV⊥(kkk, 0)

= cosωt · VVV⊥(kkk, 0) + sinωt · K̂VVV⊥(kkk, 0) (14.2)

At each point in kkk -space the free field vector VVV = VVV⊥ simply twirls about the
local kkk with the locally-determined angular velocity ω. The “integrated local
history” effects mentioned above are entirely absent.
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The plan now is first to sharpen our understanding of the significance of
(14.2), then to retreat from kkk -space to xxx-space.

What I have once called the “plane normal to the kkk -vector” is now more
usefully/precisely described

Π(kkk) ≡
{

2-dimensional complex vector space
tangent at kkk to the sphere of radius k

Every element ZZZ⊥∈ Π(kkk) can be developed

ZZZ⊥ = linear combination of basis elements ZZZ1
⊥(kkk) and ZZZ2

⊥(kkk)

While
{
ZZZ1

⊥,ZZZ
2
⊥

}
can be selected arbitrarily (subject only to the requirement

that they be linearly independent), it is algebraically most convenient/natural
to select the eigenbasis of K̂. I reserve for an appendix discussion of how,
in general detail, the eigenvectors of K̂ can be constructed/described: for the
moment it is sufficient to notice that

the real antisymmetry of K̂ =⇒ the hermiticity of H ≡ −i K̂

The eigenvalues of H are necessarily real (they are in fact real and distinct:{
0,±1

}
) so those of K̂ are necessarily imaginary:

{
0,±i

}
. The eigenvectors

of H are simultaneously eigenvectors of K̂—call them eee−, eee0 and eee+—and are
necessarily orthogonal, and can be arranged to be orthonormal in the sense
standard to complex theory.6 From K̂ eee0 = 0eee0 (which in Tom’s vectorial
language reads kkk × eee0 = 000) we know that eee0 = k̂kk , while

K̂ eee+ = +ieee+

K̂ eee− = −ieee−

}
(15)

are the defining characteristics of the eigenbasis in Π(kkk).

Let the vector VVV⊥(kkk, 0) be developed

VVV⊥(kkk, 0) = V+(kkk, 0)eee+(kkk) + V−(kkk, 0)eee−(kkk)

where V±(kkk, 0) are complex numbers. From (14.2) it now follows by (15) that

VVV⊥(kkk, t) = V+(kkk, t)eee+(kkk) + V−(kkk, t)eee−(kkk)

with
V±(kkk, t) = e± iωt · V±(kkk, 0) (16)

6 This slight subtlty has heretofore remained invisible because in all prior
statements of the form aaa ⊥ bbb either aaa or bbb (or both) was real. Note, by the way,
that the eigenvectors eee are determined only to within arbitrary/independent
phase factors eiα. The point is elaborated in Appendix A.
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The “retreat from kkk -space to xxx-space” is accomplished by inversion of (5):

VVV⊥(xxx, t) = (2π)−
3
2

∫∫∫
exp

{
+ ikkk···xxx

}
VVV⊥(kkk, t) d3k (17)

where the ⊥ on the lefthand side is vestigial, the original meaning having been
lost in the integration process. But let us, with Tom, look to the primitive case
in which VVV⊥(kkk, 0) —whence also VVV⊥(kkk, t) —vanishes except at an isolated point
in kkk -space:

VVV⊥(kkk, 0) = (2π)+
3
2 WWW⊥δ(kkk − kkk0) : WWW⊥ normal to kkk0 (18)

The
∫∫∫

then trivializes; we have

VVV⊥(xxx, 0) = WWW⊥ exp
{
ikkk0···xxx

}
which is the very opposite of localized: VVV⊥(xxx, 0) is constant on space-filling
planes normal to kkk0. Now let

{
eee+ , eee−

}
be orthonormal eigenvectors of K̂0,

resolve WWW⊥ in the now familar way

WWW⊥ = W+ eee+ + W− eee−

. . . turn on time and obtain

VVV⊥(xxx, t) = W+ exp
{
i(kkk0···xxx + ω0t)

}
eee+ + W− exp

{
i(kkk0···xxx− ω0t)

}
eee− (19)

The first term on the right fills xxx-space with plane waves rushing antiparallel
to kkk0 with speed k0/ω0 = c; the second term with waves rushing parallel to kkk0.
The antipodal construction

VVV antipodal
⊥ (kkk, 0) = (2π)+

3
2 WWW⊥δ(kkk + kkk0) : WWW⊥ normal to kkk0

reverses those directional assignments: we obtain7

VVV antipodal
⊥ (xxx, t) = W+ exp

{
i(−kkk0···xxx + ω0t)

}
eee− + W− exp

{
i(−kkk0···xxx− ω0t)

}
eee+

Let me, for the purposes of this discussion, abandon the retrograde blue terms.

In Appendix A we learn to write

eee+ ≡ 1√
2
(aaa− ibbb)

eee− ≡ 1√
2
(aaa + ibbb)

}
(20)

where aaa is a real vector ⊥ kkk0, and so is bbb ≡ kkk0× aaa . Returning with (20) to (19)
we obtain a result which might be notated

VVV �(xxx, t) = Ae−iα exp
{
i(kkk0···xxx− ω0t)

}
(aaa + ibbb)

= A
[
aaa cosϕ− bbb sinϕ

]
+ iA

[
aaa sinϕ + bbb cosϕ

]
(21.1)

= EEE�(xxx, t) + iBBB�(xxx, t)

7 Here a subtlty: sign-reversal of kkk entails that in (20) we reverse also the sign
of bbb, so that

{
k̂kk, aaa, bbb

}
new

is again a righthanded frame: this entails interchange of
the roles played by eee+ and eee−, of which I take account in the following equation.
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with ϕ ≡ kkk0···xxx− ω0t. In the antipodal case we on the other hand find

VVV �(xxx, t) = Beiβ exp
{
i(−kkk0···xxx + ω0t)

}
(aaa + ibbb)

= B
[
aaa cosϕ + bbb sinϕ

]
+ iB

[
− aaa sinϕ + bbb cosϕ

]
(21.2)

= EEE�(xxx, t) + iBBB�(xxx, t)

Superposition—construction of

EEE(xxx, t) = A
[
aaa cosϕ− bbb sinϕ

]
+ B

[
aaa cos(ϕ + δ) + bbb sin(ϕ + δ)

]
(22.1)

which physically (but, from a mathematical viewpoint, redundantly) entails
construction also of

BBB(xxx, t) = A
[
aaa cos(ϕ + π

2 )− bbb sin(ϕ + π
2 )

]
(22.2)

+ B
[
aaa cos(ϕ + δ + π

2 ) + bbb sin(ϕ + δ + π
2 )

]
—yields a description of the most general monochromatic electromagnetic plane
wave with propagation vector kkk0.

It is interesting that Tom’s formalism leads most naturally to the synthesis
of plane waves by superposition of � / � circularly polarized waves, while
the more standard line of argument—which has much in common with Tom’s
argument,8 but is much swifter—leads with equal naturalness to superposition
of ←→ / � linearly polarized waves:

EEE(xxx, t) = E1 cosϕ · aaa + E2 cos(ϕ + δ) · bbb (23.1)
BBB (xxx, t) = E1 cos(ϕ + π

2 ) · aaa + E2 cos(ϕ + δ + π
2 ) · bbb (23.2)

Tom’s �-wave can be recovered from (23) by setting E1 = E2 = A and δ = π
2 ,

while his �-wave results from setting E1 = E2 = B and δ = −π
2 .

8 One asks for the conditions imposed upon vectors kkk , EEE and BBB by the
requirement that the fields

EEE(xxx, t) ≡ EEE exp
{
i(kkk ···xxx− ωt)

}
and BBB(xxx, t) ≡ BBB exp

{
i(kkk ···xxx− ωt)

}
be solutions of the free-field equations

∇∇∇···VVV = 0

−i∇∇∇×VVV − 1
c

∂
∂tVVV = 000

}
(24)

See classical electrodynamics (/) page 342 for an account of the
elementary details.
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The polarizational state of a plane wave is most usefully described by the
so-called Stokes parameters

S0 = E2
1 + E2

2

S1 = E2
1 − E2

2

S2 = 2E2
1E2

2 cos δ

S3 = 2E2
1E2

2 sin δ

The assignments just described yield

S0 = 2A2

S1 = 0
S2 = 0

S3 = +2A2


 in Tom’s case EEE�, and

and
S0 = 2A2

S1 = 0
S2 = 0

S3 = −2A2


 in Tom’s case EEE�

which can be read (see page 348 in the notes just cited) as a reassertion that
Tom has been led to states of left/right circular polarization.

So what has Wieting taught us? Tom has reminded us that, in a class of favorable
cases, Fourier transform techniques can be used to reduce systems of partial
differential equations to systems of ordinary differential equations, and thus
to purchase some analytical advantages. This is not news to the engineers
(beginning, I think, with Heaviside) who study things like transmission lines,
or to physicists interested in special solutions of (say) the Dirac equation.
The PDE’s encountered in those cases are—like the PDE’s bequeathed to us
by Maxwell/Heaviside/Lorentz—multicomponent linear systems into which ∂

∂t
enters linearly. But if the technique is hardly novel, it has served to cast classical
electrodynamics in a light that I find fresh and interesting.

To sharpen the point a bit: Tom has achieved interesting electrodynamical
insight by abandoning the (manifest) Lorentz covariance of that theory (and
would, at the outset, do the same if he were to undertake discussion of the
Dirac equation). That I found to be a bracing reminder that strict adherence
to manifest Lorentz covariance, though often quite illuminating, does entail
costs . . . and closes doors that might usefully be left ajar.

But abandonment of Lorentz covariance seems to me an unpromising first
step if one’s objective is (as Tom’s appears to be) to establish contact with the
Wigner/Bargmann classification of the unitary representations of the Lorentz
group.
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Tom does not claim to have produced a comprehensive “electrodynamics,”
so cannot be faulted for having omitted all reference to the theory of potentials
(of which he had no computational need), the structure of the stress-energy
tensor (which in non-relativistic theory tends to fragment), the means by which
one establishes contact with the language of Lagrangian field theory: I will take
up some of those topics in my appendices.

Tom does, however, seem to imagine that his work bears directly (if in
some unspecified way) on the theory of “photons.” This I strenuously deny.
His work proceeds without reference to � (a notational adjustment kkk �→ ppp/�
would accomplish nothing of physical substance), is a contribution to classical
electrodynamics, and bears only in that vaguely latent sense upon the essential
phenomenology of QED. The theory, in its present (unquantized) state, has
absolutely nothing to say about Einstein’s “photon”—nothing to say about
why the electromagnetic field, when interacting with other systems (matter)
exchanges energy in frequency-dependent units of �ν, angular momentum in
units of � .

Tom’s essay could have been written by Maxwell himself, and the thought
has occurred to me that it may, in fact, have been intended as homage to
Maxwell. Both avoid the notations that since ∼ have been standard to
the field. Both are content to use different letters of the alphabet to name
the components of multicomponent objects.9 And both are—each for his own
reason—content to keep relativity (also quantum mechanics!) “off stage.”

9 Is it possible that the indexed notation that has been commonplace for
now more than a century was made possible by a late 19th Century typographic
development?
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APPENDIX A: Projective construction of the eigenbasis of K̂ . Look first, by way
of orientation, to the case

k̂kk =


 0

0
1


 =⇒ K̂ =


 0 −1 0

1 0 0
0 0 0




The characteristic equation reads λ(λ2 + 1) = 0; the eigenvalues are
{
0,±i

}
and the associated normalized eigenvectors are

eee0 =


 0

0
1


 , eee+ = 1√

2


 +i

1
0


 , eee− = 1√

2


−i1

0


 = (eee+)∗

By inspection we have this table of inner products


 eeet0eee0 eeet0eee+ eeet−eee−

eeet+eee0 eeet+eee+ eeet+eee−
eeet−eee0 eeet−eee+ eeet−eee−


 =


 1 0 0

0 1 0
0 0 1




where I have used t to signify the conjugated transposition (adjunction). The
associated projectors are

P0 = eee0 eee
t
0 =


 0 0 0

0 0 0
0 0 1




P+ = eee+eee
t
+ = 1

2


 1 i 0
−i 1 0

0 0 0




P− = eee−eee
t
− = 1

2


 1 −i 0

i 1 0
0 0 0


 = P

∗
+

which are readily seen to be hermitian/orthogonal/complete. From

K̂ =


 0 −1 0

1 0 0
0 0 0


 and K̂

2 =


−1 0 0

0 −1 0
0 0 0




It becomes obvious that we can write

P0 = I + K̂
2

P+ = − 1
2

(
K̂

2 + i K̂
)

P− = − 1
2

(
K̂

2 − i K̂
)


 (A1)
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Immediately P0 + P+ + P− = I , while each of the statements

P
2
0 = P0 and P0 P+ = P0 P− = O

P
2
+ = P+ and P+P0 = P+P− = O

P
2
− = P− and P−P0 = P−P+ = O


 (A2)

can be extracted directly from the Cayley-Hamilton identity: K̂
3 = −K̂ .

But the Cayley-Hamilton identity holds generally (i.e.; is not special to
the k̂kk assumed at the outset, but holds for all k̂kk). Using

K̂ =


 0 −k̂3 k̂2

k̂3 0 −k̂1

−k̂2 k̂1 0


 and K̂

2 =


 k̂1k̂1 − 1 k̂1k̂2 k̂1k̂3

k̂2k̂1 k̂2k̂2 − 1 k̂2k̂3

k̂3k̂1 k̂3k̂2 k̂3k̂3 − 1




we could in a moment write down explicit descriptions of the projectors P in
the general case, and in terms of them recover the projectors previously denoted

P‖ = P0

P⊥ = P+ + P−

}
(A3)

It is evident that P0 projects onto

eee0(k̂kk) = k̂kk (A4.1)

To discover eee+ and eee− we might (with the assistance of Mathematica)

construct P0sss with a “seed vector” given by (say) sss =


 1

1
1




and normalize the result; such a procedure leads to

eee+(k̂kk) = 1

2
√

1−k̂2k̂3−k̂3k̂1−k̂1k̂2


 1− k̂1(k̂1 + k̂2 + k̂3)− i(k̂2 − k̂3)

1− k̂2(k̂1 + k̂2 + k̂3)− i(k̂3 − k̂1)
1− k̂3(k̂1 + k̂2 + k̂3)− i(k̂1 − k̂2)


 (A4.2)

eee−(k̂kk) = 1

2
√

1−k̂2k̂3−k̂3k̂1−k̂1k̂2


 1− k̂1(k̂1 + k̂2 + k̂3) + i(k̂2 − k̂3)

1− k̂2(k̂1 + k̂2 + k̂3) + i(k̂3 − k̂1)
1− k̂3(k̂1 + k̂2 + k̂3) + i(k̂1 − k̂2)


 (A4.3)

These vectors pass all orthonormality and other tests, and in the case

k̂kk =


 0

0
1



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are phase-equivalent (multiply by ei π
2 = (1 + i)/

√
2 ) to the eigenvectors which

marked our point of departure. But they fail in the case k̂kk = sss; one has, in that
case, to select a different seed (any seed with a component normal to k̂kk). The
seed-adjustment problem leads us to notice this generalization of the result just
obtained:

eee+(k̂kk) =
sss− (sss···k̂kk)k̂kk − ik̂kk×sss

length

eee−(k̂kk) =
sss− (sss···k̂kk)k̂kk + ik̂kk×sss

length

length =
√

2(1− (sss···k̂kk)2




(A5)

The assumption here is that sss is a unit vector not parallel to k̂kk , but otherwise
arbitrary. Equations (A5) render the entire subject transparent, but contain a
surprise: there are as many ways to assign meaning to

{
eee+(k̂kk), eee−(k̂kk)

}
as there

are ways to select sss. And such a state of affairs is, in fact, quite intelligible:

Equations (A5) are of the form

eee+ =
aaa− ibbb√
a2 + b2

eee− =
aaa + ibbb√
a2 + b2

where aaa and bbb = k̂kk×aaa are real vectors of the same length, normal to each other
and also to k̂kk. Without loss of generality we may assume aaa whence also bbb to be
unit vectors: then we confront

eee+ = 1√
2
(aaa− ik̂kk × aaa)

eee− = 1√
2
(aaa + ik̂kk × aaa)


 (A6)

Immediately, the orthonormality properties of
{
eee+, eee−

}
mimic those of

{
aaa, bbb

}
.

Moreover,

K̂ eee+ = k̂kk × eee+ = 1√
2

{
k̂kk × aaa− ik̂kk × (k̂kk × aaa)

}
= 1√

2

{
k̂kk × aaa− i

[
(k̂kk···aaa)k̂kk − (k̂kk···k̂kk)aaa

]}
= 1√

2

{
k̂kk × aaa + iaaa

}
= +ieee+

Similarly (or by simple complex conjugation) K̂ eee− = −ieee−. The simple upshot
of the (excessively round about) argument is that

the eee± given by (A6) will be eigenvectors of K̂

no matter how the real unit vector aaa is positioned
on the plane normal to the real unit vector k̂kk
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And the O(2) symmetry that lurks within the definitions (A6) is in fact
very easily understood. Let

{
aaa, bbb

}
be a real orthonormal basis inscribed on the

plane ⊥ to k̂kk, and let
{
aaa, bbb

}
be another. Then

aaa = aaa(aaa···aaa) + bbb(bbb···aaa) = aaa cos θ − bbb sin θ

bbb = aaa(aaa···bbb) + bbb(bbb···bbb) = aaa sin θ + bbb cos θ

which when introduced into

eee+ = eee+(eee+
t eee+) + eee−(eee−t eee+)

eee− = eee+(eee+
t eee−) + eee−(eee−t eee−)

together with the definitions

eee+ ≡ 1√
2
(aaa− ibbb)

eee− ≡ 1√
2
(aaa + ibbb)

and
eee+ ≡ 1√

2
(aaa− ibbb)

eee− ≡ 1√
2
(aaa + ibbb)

are found by quick calculation to give(
eee+

eee−

)
= U

(
eee+

eee−

)
where U =

(
e+iθ 0
0 e−iθ

)
is unitary

Unitary transformations are well known to preserve all essential properties of
eigenvalues/vectors.

It has come accidentally to my attention that *Problem 3.17 in David
Griffiths’ Introduction to Quantum Mechanics () captures the essence of
what I have had to say.
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APPENDIX B: Potentials and duality rotations in the complex formalism. Tom is
quite aware that the Maxwell equations (2)

∇∇∇···VVV = ρ

−i∇∇∇×VVV − 1
c

∂
∂tVVV = 1

cJJJ

are—trivially—invariant under the simultaneous adjustments

VVV �→ ei θ VVV and ρ �→ ei θρ and JJJ �→ ei θJJJ (B1)

and that this adjustment, when spelled out

EEE �→ EEE cos θ −BBB sin θ

BBB �→ EEE sin θ +BBB cos θ

ρe �→ ρe cos θ − ρm sin θ

ρm �→ ρe sin θ + ρm cos θ

JJJe �→ JJJe cos θ − JJJm sin θ

JJJm �→ JJJe sin θ + JJJm cos θ

is precisely what is standardly called a “duality rotation.”10 The relative
economy of the complex formalism—of (B1)—in this regard is striking. But
why do I couple that remark with an allusion to the theory of electromagnetic
potentials?

In ordinary Maxwellian theory (i.e., in the absence of magnetic charges
and currents) we write

BBB = ∇∇∇×AAA (B2.1)
AAA susceptible to gauge: AAA �→ AAA +∇∇∇···χ

as a means of rendering ∇∇∇···BBB = 0 automatic. Then

EEE = −∇∇∇φ− 1
c

∂
∂tAAA (B2.2)

φ susceptible to gauge: φ �→ φ− 1
c

∂
∂tχ

serves to render automatic also the other sourceless equation: ∇∇∇×EEE+ 1
c

∂
∂tBBB = 000.

The sourcey field equations now become

−∇2φ− 1
c

∂
∂t∇∇∇···AAA = ρe

∇∇∇(∇∇∇···AAA + 1
c

∂
∂tφ)−∇∇∇2AAA +

(
1
c

∂
∂t

)2
AAA = 1

cJJJe

10 For a fairly elaborate discussion of this topic, couched in language borrowed
from the exterior calculus, see electrodynamics (/); also C. Misner,
K. Thorne & J. Wheeler, Gravitation (), pages 108 & 482.
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and if we impose the Lorentz gauge condition

∇∇∇···AAA + 1
c

∂
∂tφ = 0

assume the attractive form {(
1
c

∂
∂t

)2 − ∇2
}
φ = ρe{(

1
c

∂
∂t

)2 −∇∇∇2
}
AAA = JJJe

The fields φ and AAA are now decoupled , but satisfy PDE’s of second order. Tom’s
Fourier transform technique could be adapted straightforwardly to the solution
of those equations, and to the reexpression of all the manipulations that led to
them.

In the hypothetical presence of magnetic sources one no longer has two
“sourceless Maxwell equations,” is cut off from what classically was the primary
motivation for introducing potentials

{
φ,AAA

}
, and cut off also from any obvious

means to do so. Yet classically the introduction of potentials had also a second
line of motivation (they permit one to construct decoupled field equations,
which are easier to solve), and it is in the language of potential theory that one
standardly undertakes to quantize the electromagnetic field. One would like,
therefore, to be able to retain (some generalization of) the potential concept
even in the presence of magnetic sources. Dirac () described one way
in which this might be accomplished. An alternative procedure, involving
the introduction of a pair of 4-potentials, was described by N. Cabibbo &
E. Ferrari,11 but that theory (ditto the standard theory sketched above!) seems
to stand skew to natural tendencies of the complex formalism favored by Tom.
I follow now, therefore, in the footsteps of M. Y. Han & L. C. Biedenharn ,12

who themselves proceed form Hertz’ observations () that the Lorentz gauge
condition becomes automatic if one writes13

φ = ∇∇∇···HHH and AAA = − 1
c

∂
∂tHHH +∇∇∇×GGG : GGG arbitrary (B3)

and that the charge continuity equation ∂
∂tρe +∇∇∇···JJJe = 0 becomes automatic if

one writes

cρe = ∇∇∇···PPPe and JJJe = − 1
c

∂
∂tPPPe +∇∇∇×QQQ : QQQ arbitrary (B4)

11 “Quantum electrodynamics with magnetic monopoles,” Nuovo Cimento
23, 1147 (1962). In electrodynamics (/), beginning at page 350, I
discuss in elaborate detail how the exterior calculus can be used to construct an
elegant account of the Cabibbo/Ferrari theory, and at the same time to enlarge
upon what might be called the “internal symmetry group” of Maxwellian
electrodynamics (i.e., to construct “generalized duality transformations”).

12 “Manifest dyality invariance in electrodynamics and the Cabibbo-Ferrari
theory of magnetic monopoles,” Nuovo Cimento 2A, 544 (1971).

13 I use HHH (where Hertz himself used −ΠΠΠ ) to suggest “Hertz potential.” For
a good account of Hertz’ original idea, see §§13 -4 through 13-7 in Panofsky &
Phillips, Classical Electricity and Magnetism ().
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Returning with (B3) to (B2) we obtain

BBB = ∇∇∇×
{
− 1

c
∂
∂tHHH +∇∇∇×GGG

}
EEE = ∇∇∇×

{
− 1

c
∂
∂tGGG−∇∇∇×HHH

}
+ HHH


 (B5)

where in the derivation of the latter equation we have again made use of the
identity ∇∇∇(∇∇∇···HHH) = ∇∇∇×∇∇∇×HHH +∇∇∇2HHH (here ∇∇∇2 is the “vectorial laplacian”)
and of ≡

{(
1
c

∂
∂t

)2 − ∇∇∇2} which defines the “vectorial wave operator.” In
this notation

∇∇∇···BBB = 0 remains automatic
∇∇∇···EEE = ρe becomes ∇∇∇··· HHH = ∇∇∇··· 1cPPPe

}
(B6.1)

The latter equation would follow from (but does not strictly entail)

HHH = 1
cPPPe

Similarly (the computational labor becomes now a bit tedious, but involves no
new idea, and takes just a minute if done carefully on a large piece of paper)

−∇∇∇×EEE − 1
c

∂
∂tBBB = 000 remains automatic

+∇∇∇×BBB − 1
c

∂
∂tEEE = 1

cJJJe becomes
{
− 1

c
∂
∂tHHH +∇∇∇×GGG

}
= 1

cJJJe


 (B6.2)

—the latter of which is simply Hertz’ notational adjustment of the familiar
statement that (in Lorentz gauge) AAA = 1

cJJJe.14 We now have{
− 1

c
∂
∂tHHH +∇∇∇×GGG

}
= 1

c

{
− 1

c
∂
∂tPPPe +∇∇∇×QQQ

}
↓

− 1
c

∂
∂t · HHH = − 1

c
∂
∂t · 1

c PPPe if we set GGG = QQQ = 000

which once again “would follow from (but does not strictly entail)”

HHH = 1
cPPPe (B7)

Let us step for a moment into Hertz’ shoes. We claim no interest in
magnetic sources, are content to dismiss GGG and QQQ as pointless frivolities, and
consider (B7) to be fundamental. We introduce the subsidiary derived fields

φ ≡ ∇∇∇···HHH, AAA ≡ − 1
c

∂
∂tHHH, ρ ≡ 1

c∇∇∇···PPPe , JJJe ≡ − 1
c

∂
∂tPPPe

14 We note in passing that this, by BBB = ∇∇∇×AAA, can be read as the “uncurled
precursor” of a statement BBB = 1

c∇∇∇×JJJe that follows directly/easily from
Maxwell’s equations, but is usually encountered only in source-free applications.
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(from which ∇∇∇···AAA + 1
c

∂
∂tφ = 0 and ∇∇∇···JJJe + ∂

∂tφe = 0 follow as corollaries) and,
hitting (B7) with ∇∇∇··· else 1

c
∂
∂t , obtain

φ = ρe and AAA = 1
cJJJe

Next (proceeding backwards through some familiar manipulations) we notice
that

φ =
(

1
c

∂
∂t

)2
φ−∇∇∇···∇∇∇φ

= − 1
c

∂
∂t∇∇∇···AAA−∇∇∇···∇∇∇φ by the Lorentz gauge condition

= ∇∇∇···EEE if we introduce EEE ≡ −∇∇∇φ− 1
c

∂
∂tAAA

AAA =
(

1
c

∂
∂t

)2
AAA +

{
∇∇∇(∇∇∇···AAA)−∇∇∇2AAA

}
−∇∇∇(∇∇∇···AAA)

=
(

1
c

∂
∂t

)2
AAA +

{
∇∇∇×(∇∇∇×AAA)

}
+∇∇∇

(
1
c

∂
∂tφ

)
by the Lorentz gauge condition

= ∇∇∇×(∇∇∇×AAA)− 1
c

∂
∂t

{
−∇∇∇φ− 1

c
∂
∂tAAA

}
= ∇∇∇×BBB − 1

c
∂
∂tEEE if we introduce BBB ≡ ∇∇∇×AAA

and so obtain

∇∇∇···EEE = ρe

∇∇∇×BBB − 1
c

∂
∂tEEE = 1

cJJJe

together with the automatic identities

∇∇∇···BBB = 0
∇∇∇×EEE + 1

c
∂
∂tBBB = 000

Maxwell’s equations—the physics of the matter—lie, by this account, “two
differentiations down” from the equations that Hertz considers fundamental.
Hertz’ (B7) masks the Lorentz covariance of the theory,15 and its relation to
formal problems (duality invariance) associated with the conjectured existence
of magnetic charge/current remains obscure (but see below); sufficient, in his
view, was the recommendation that in (B7) one has only three (instead of the
usual four) uncoupled equations to worry about/solve.

In the simultaneous presence of electric and magnetic sources we expect to
have

∂
∂tρe +∇∇∇···JJJe = 0 and ∂

∂tρm +∇∇∇···JJJm = 0

Write ρ = ρe+iρm and JJJ = JJJe+iJJJm, introduce PPP = PPP e+iPPPm and observe that
the electric/magnetic continuity equations would arise as the real/imaginary
parts of

∂
∂tρ +∇∇∇···JJJ = 0

15 Should one try to promote HHH and PPP to the status of 4-vectors? Find places
for them (together with what other six things?) within a pair of antisymmetric
second rank tensors?
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if we had
ρ ≡ 1

c∇∇∇···PPP and JJJ ≡ − 1
c

∂
∂tPPP (B8.1)

Next complexify the Hertz potential

HHH = HHHe + iHHHm

and postulate the persistence of (B7):

HHH = 1
cPPP (B8.2)

We then have
∇∇∇··· HHH = ρ

1
c

∂
∂t · HHH = 1

cJJJ

from which we want, by contrivance, to recover (2):

∇∇∇···VVV = ρ

−i∇∇∇×VVV − 1
c

∂
∂tVVV = 1

cJJJ

Immediately VVV = HHH +∇∇∇×WWW . Assuming WWW to be assembled from the only
material available

WWW = a 1
c

∂
∂tHHH + b∇∇∇×HHH : a and b are adjustable constants

we have

−i∇∇∇×
{
∇∇∇×

[
a 1
c

∂
∂tHHH + b∇∇∇×HHH

]
+ HHH

}
− 1

c
∂
∂t

{
∇∇∇×

[
a 1
c

∂
∂tHHH + b∇∇∇×HHH

]}
− 1

c
∂
∂t HHH = 1

cJJJ

and require the red terms to vanish. Elementary manipulations give

red terms = −(b + ia) 1
c

∂
∂t∇∇∇×∇∇∇×HHH − (a + i)

(
1
c

∂
∂t

)2∇∇∇×HHH − i(b + 1)∇2∇∇∇×HHH
= 0 if and only if we set a = −i and b = −1

The implication is that if we set

VVV = ∇∇∇×
{
− i 1

c
∂
∂tHHH −∇∇∇×HHH

}
+ HHH (B9.1)

—more explicitly: if we set (compare (B5))

EEE = ∇∇∇×
{

+ 1
c

∂
∂tHHHm −∇∇∇×HHHe

}
+ HHHe

BBB = ∇∇∇×
{
− 1

c
∂
∂tHHHe −∇∇∇×HHHm

}
+ HHHm


 (B9.2)
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—then we can recover the generalized Maxwell equations (2) as corollaries of
(B8).16

We stand now in possession of a formalism that takes the electromagnetic
field to be a complex 3-vector field, that is endowed with a theory of potentials,
and that is manifestly duality-invariant.

Duality rotations can be used to kill the magnetic sources at a point ;
the proposition that they can be killed globally by such means is physically
surprising, but was incorporated implicitly into the theory devised by Maxwell.
If we set HHHm = JJJm = 000 and introduce the notations

φ ≡ ∇∇∇···HHHe and AAA ≡ − 1
c

∂
∂tHHHe

then (B9.2) give back the statements (B2) that are standard to the textbooks:

EEE = −∇∇∇φ− 1
c

∂
∂tAAA

BBB = ∇∇∇×AAA

Equation (B8.2)—exquisitely simple as it stands—becomes even simpler
in the absence of sources. In either case it yields straightforwardly to solution
by Tom’s (Lorentz covariance breaking) Fourier transform technique. Also
available, however, is a covariant Fourier analytic technique that leads back
again to the familiar theory of D-functions.17

16 The argument just concluded is (in my view) swifter and more natural than
that given by Han & Biedenharn, yet very clumbsy compared to the (manifestly
covariant) argument presented in some old notes cited earlier11 and on pages
29–40 of “Electrodynamical applications of the exterior calculus” ().

17 See classical electrodynamics (/), pages 382–389.
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APPENDIX C (projected): Formulation in the language of Lagrangian field theory.

My intent here will be to explore the possibility of expressing the complex
vector field theories described above (the VVV -theory, the HHH-theory) in the
canonical language of Lagrangian field theory. Success would place one in
position to discuss mechanical properties of the field in a rational way, to study
the Noetherian implications of duality symmetry, etc. Han & Biedenharn (near
the end of their §2) claim that a “completely satisfactory such theory does
not yet exist,” and cite a paper by F. Rohrlich (Phys. Rev. 150, 1104)
in which it is argued that the Cabibbo/Ferrari formalism does not admit of
Lagrangian formulation. They put their paper forward as an improvement
upon Cabibbo/Ferrari, but no Lagrangian appears within it. A satisfactory
Lagrangian would have to supply not just (say) HHH = 1

cPPP but also all the
subsidiary equations/definitions that lead back to EEE, BBB, ρ and JJJ .

APPENDIX D (projected): Broken transversality.

My objective would be to clarify the origin/meaning of transversality by
producing models (Lagrangians?) in which the planewave solutions are not
transverse—models which serve to illustrate what (mass?) must be “turned
off” to achieve the transversality characteristic of electromagnetic planewaves.


